\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx\) [370]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {4 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {20 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

4*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+20/3*a^3*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a^3*sin(d*x+c)/d/cos(d*x+c)
^(1/2)+2/3*a^3*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3876, 3854, 3856, 2720, 2719, 3853} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {20 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^3,x]

[Out]

(4*a^3*EllipticE[(c + d*x)/2, 2])/d + (20*a^3*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^3*Sin[c + d*x])/(d*Sqrt[
Cos[c + d*x]]) + (2*a^3*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3876

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \left (\frac {a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sqrt {\sec (c+d x)}}+3 a^3 \sqrt {\sec (c+d x)}+a^3 \sec ^{\frac {3}{2}}(c+d x)\right ) \, dx \\ & = \left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\left (3 a^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (3 a^3\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx-\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} a^3 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-a^3 \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {4 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {20 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.39 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.60 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {2 a^3 \csc (c+d x) \left (-3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+\cos (c+d x) \left (-1+\cos ^2(c+d x)+10 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+3 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )\right )}{3 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^3,x]

[Out]

(-2*a^3*Csc[c + d*x]*(-3*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] + Cos[c + d*x]
*(-1 + Cos[c + d*x]^2 + 10*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] + 3*Cos[c + d
*x]*Hypergeometric2F1[1/2, 3/4, 7/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2])))/(3*d*Sqrt[Cos[c + d*x]])

Maple [A] (verified)

Time = 6.94 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.89

method result size
default \(-\frac {4 a^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(172\)

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+5*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d
*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.98 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (a^{3} \cos \left (d x + c\right ) + 3 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

-2/3*(5*I*sqrt(2)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a^3
*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*a^3*cos(d*x + c)*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*a^3*cos(d*x + c)*weie
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (a^3*cos(d*x + c) + 3*a^3)*sqr
t(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 13.79 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.14 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {6\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {20\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^3,x)

[Out]

(6*a^3*ellipticE(c/2 + (d*x)/2, 2))/d + (20*a^3*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (2*a^3*cos(c + d*x)^(1/2)
*sin(c + d*x))/(3*d) + (2*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*
(sin(c + d*x)^2)^(1/2))